Contextual Analysis of Textured Scene Images
نویسندگان
چکیده
Classifying image regions into one of several pre-defined semantic categories is a typical image understanding problem. Different image regions and object types might have very similar color or texture characteristics making it difficult to categorize them. Without contextual information it is often impossible to find reasonable semantic labeling for outdoor images. In this paper, we combine an efficient SVM-based local classifier with the conditional random field framework to incorporate spatial contex information to the classification. The images are represented with powerful local texture features. Then a discriminative multiclass model for finding good labeling for the image is learned. The performance of the method was evaluated with two different datasets. The approach was also shown to be useful in more general image retrieval and annotation tasks based on classification.
منابع مشابه
Color scene transform between images using Rosenfeld-Kak histogram matching method
In digital color imaging, it is of interest to transform the color scene of an image to the other. Some attempts have been done in this case using, for example, lαβ color space, principal component analysis and recently histogram rescaling method. In this research, a novel method is proposed based on the Resenfeld and Kak histogram matching algorithm. It is suggested that to transform the color...
متن کاملBOiS—Berlin Object in Scene Database: Controlled Photographic Images for Visual Search Experiments with Quantified Contextual Priors
Citation: Mohr J, Seyfarth J, Lueschow A, Weber JE, Wichmann FA and Obermayer K (2016) BOiS—Berlin Object in Scene Database: Controlled Photographic Images for Visual Search Experiments with Quantified Contextual Priors. Front. Psychol. 7:749. doi: 10.3389/fpsyg.2016.00749 BOiS—Berlin Object in Scene Database: Controlled Photographic Images for Visual Search Experiments with Quantified Contextu...
متن کاملVisual Training and Classification of Textured Scene Images
Classification of textures in scene images is very difficult due to the high variability of the data within and between images caused by effects such as non-homogeneity of the textures, changes in illumination, shadows, foreshortening and self-occlusion. For these reasons, finding proper features and representative training samples for a classifier is very problematic. Even defining the classes...
متن کاملThe Detection Of Local Abnormalities In Random Macro Textures
Various techniques have been suggested for the detection of abnormalities in regularly textured patterns. These consist of searching for strong variations in a scene of replicated texture primi-tives. However, higlighting irregularities in randomly structured textures such as ceramic, granite or marble, is more challenging. We present a group of techniques which are based in both the spatial an...
متن کاملScene Labeling with Contextual Hierarchical Models
Scene labeling is the problem of assigning an object label to each pixel. It unifies the image segmentation and object recognition problems. The importance of using contextual information in scene labeling frameworks has been widely realized in the field. We propose a contextual framework, called contextual hierarchical model (CHM), which learns contextual information in a hierarchical framewor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006